Atomistic-continuum coupling within a Spacetime Discontinuous Galerkin framework

^aBrent Kraczek, ^{a,b}Duane D. Johnson, ^cRobert B. Haber,

University of Illinois at Urbana-Champaign,

Departments of ^aPhysics, ^bMaterials Science and Engineering, and ^cTheoretical and Applied Mechanics

{kraczek,duanej,r-haber}@uiuc.edu

This work is part of the Center for Process Simulation and Design, NSF ITR grant DMR-0121695 with additional support from the Materials Computation Center, UIUC, NSF ITR grant DMR-0325939

Atomistic-continuum coupling: Objective

Objective: Develop coupling formalism for solid mechanics that

- Treats different scales
 with appropriate methods
- 2. Allows refinement/coarsening of scales in both space and time
- 3. Maintains compatibility and balance of momentum and energy

- 4. Eliminates unphysical reflections at atomistic-continuum interface
- 5. Is O(N) and parallelizable for dim≥1
- 6. Permits dropping in "favorite-flavor" of MD (possible restrictions on time-stepping)
- 7. Accomplishes all this within a consistent mathematical framework

We have partially fulfilled these objectives within the mathematical framework of an elastodynamic spacetime discontinuous Galerkin (SDG) finite element method.

Configuration space vs. phase space (discrete)

Newton's principle of determinacy and 2nd law of motion:

Initial positions and velocities of system uniquely determine entire motion of system.

$$\dot{\mathbf{p}}_i - \sum \mathbf{F}_i = \mathbf{0} , \ \mathbf{p}_i = m \dot{\mathbf{u}}_i$$

Two (nearly) equivalent viewpoints:

Configuration space

Viewpoint:

Employ u, \dot{u} , with u and \dot{u} interdependent

Equation of motion:

$$m\ddot{\mathbf{u}}_i - \sum_j \mathbf{F}_{ij} \left(\{ \mathbf{u}_j \} \right) = \mathbf{0}$$

Viewpoint of Lagrangian mechanics Better suited for

- General use
- Relativistic mechanics

Phase space

Viewpoint:

Employ $\mathbf{u}, \mathbf{p} = m\mathbf{v}$, assuming \mathbf{u} and \mathbf{p} independent

Equation of motion + compatibility:

$$\dot{\mathbf{p}}_i - \sum_j \mathbf{F}_{ij} \left(\{ \mathbf{u}_j, \mathbf{p}_j \} \right) = \mathbf{0}$$
 $\mathbf{p}/m - \dot{\mathbf{u}} = \mathbf{0}$

Viewpoint of Hamiltonian mechanics Better suited for

- Statistical mechanics
- Quantum mechanics

2-field continuum formulation: Fields

Kinematic fields:

– Symmetric strain (
$$E_{ij}=E_{ji}$$
)

$$\mathbf{u} = u_i \mathbf{e}^i,$$

$$\mathbf{v} = v_i \mathbf{e}^i, \qquad \mathbf{v} = \mathbf{v} \mathbf{d} t$$

- Symmetric strain (
$$E_{ij}=E_{ji}$$
) $\mathbf{E}=E_{ij}\mathbf{e}^i\otimes\mathbf{e}^j, \quad \mathbf{E}=\mathbf{E}\wedge\mathbf{d}\mathbf{x}$

Dual fields

- Stress (
$$\sigma^{ij} = \sigma^{ji}$$
)

$$\mathbf{p} = p^i \mathbf{e}_i, \qquad \mathbf{p} = \mathbf{p} \wedge \star \mathbf{d}t$$

$$\bar{\sigma} = \sigma^{ij} \mathbf{e}_i \otimes \mathbf{e}_i, \quad \sigma = \bar{\sigma} \wedge \star d\mathbf{x}$$

Constitutive relations

(C = elasticity tensor, ρ = mass density)

$$egin{aligned} oldsymbol{p} &= \star
ho oldsymbol{v} \ oldsymbol{\sigma} &= \star oldsymbol{\mathrm{C}} \wedge oldsymbol{E} \end{aligned}$$

Strain-velocity and stress-momentum

$$oldsymbol{arepsilon} := oldsymbol{v} + oldsymbol{E}$$

$$M := \sigma - p$$

arepsilon and M follow characteristics of wave equation

2-field continuum formulation: Energy balance

- Total energy density $oldsymbol{\Phi} = rac{1}{2} oldsymbol{v} \wedge oldsymbol{p} + rac{1}{2} oldsymbol{E} \wedge oldsymbol{\sigma}$
- Relationship to Hamiltonian density H (=spatial energy density)

$$\mathcal{H}\Omega = \Phi$$

Energy flux

this is equivalent to
$$oldsymbol{N}=rac{1}{2}\left(oldsymbol{i}oldsymbol{arepsilon}\wedgeoldsymbol{M}+oldsymbol{arepsilon}\wedgeoldsymbol{i}oldsymbol{M}
ight)$$

Energy balance (including work done by external body forces b)

$$\int_{\partial Q} oldsymbol{N} + \int_{Q} oldsymbol{i} oldsymbol{v} \wedge
ho oldsymbol{b} \qquad orall Q \subset D$$

2-field continuum formulation: Field compatibility and EOM

- Field compatibility
 - 2 fields are $\mathbf{u}, \mathbf{v} \Rightarrow \mathsf{Strongly}$ enforce $\mathbf{E} \mathsf{sym} \ \nabla \mathbf{u} = \mathbf{0}$

$$\mathbf{E} - \operatorname{sym} \nabla \mathbf{u} = \mathbf{0}$$

- Split $\dot{\mathbf{u}}-\mathbf{v}=\mathbf{0}$ into strained and strain-free:
 - strain-velocity compatibility

$$\dot{\mathbf{E}} - \operatorname{sym} \nabla \mathbf{v} = \mathbf{0} \Leftrightarrow \operatorname{sym} d\boldsymbol{\varepsilon} = \mathbf{0}$$

displacement-velocity compatibility (ø subscript denotes strain-free)

$$\dot{\mathbf{u}}_{\emptyset} - \mathbf{v}_{\emptyset} = \mathbf{0} \quad \Leftrightarrow \quad \dot{\mathbf{u}}_{\emptyset} dt - v_{\emptyset} = \mathbf{0}$$

Equation of motion

$$\nabla \cdot \boldsymbol{\sigma} - \rho \dot{\mathbf{v}} + \rho \mathbf{b} = \mathbf{0} \quad \Leftrightarrow \quad dM + \rho b = \mathbf{0}$$

Continuum formulation from **Equation of Motion** and 2 compatibility relations: strain-velocity and displacement-velocity

Continuum formulation: Strong and weighted residual forms

Full strong form (including jump terms):

$$egin{aligned} (dM+
ho b)|_Q &= \mathbf{0} & ext{sym } darepsilon|_Q &= \mathbf{0} & (\dot{\mathbf{u}}_\emptyset dt - oldsymbol{v}_\emptyset)|_Q &= \mathbf{0} \ (M^*-M)|_{\partial O} &= \mathbf{0} & (oldsymbol{arepsilon}^* - oldsymbol{arepsilon})|_{\partial Q} &= \mathbf{0} & (\mathbf{u}_\emptyset^* - \mathbf{u}_\emptyset)|_{\partial Q} &= \mathbf{0} \end{aligned}$$

- Weight according to energy (recall flux $\, m{N} = rac{1}{2} \, (m{i}m{arepsilon} \wedge m{M} + m{arepsilon} \wedge m{i}m{M}) \,$)
- Weighted residual form (weighting functions denoted with ^):

$$\int_{Q} \boldsymbol{i}\hat{\boldsymbol{\varepsilon}} \cdot (\mathbf{dM} + \rho \boldsymbol{b}) + \int_{\partial Q} \boldsymbol{i}\hat{\boldsymbol{\varepsilon}} \cdot (\boldsymbol{M}^* - \boldsymbol{M})
+ \int_{Q} \mathbf{d}\boldsymbol{\varepsilon} \wedge \boldsymbol{i}\hat{\boldsymbol{M}} + \int_{\partial Q} (\boldsymbol{\varepsilon}^* - \boldsymbol{\varepsilon}) \wedge \boldsymbol{i}\hat{\boldsymbol{M}}
+ \int_{Q} k^{Q}\hat{\mathbf{u}}_{\emptyset} (\dot{\mathbf{u}}\boldsymbol{d}t - \boldsymbol{v}) \wedge \star \boldsymbol{d}t + \int_{\partial Q^{-}} k^{Q}\hat{\mathbf{u}}_{\emptyset} (\mathbf{u}^* - \mathbf{u}) \star \boldsymbol{d}t
= \mathbf{0} \ \forall \hat{\mathbf{v}} \in \mathcal{V}_{h}^{Q,v} \ \text{and} \ \hat{\mathbf{u}} \in \mathcal{V}_{h}^{Q,u}$$

(Function spaces are broken Sobolev spaces, $H^1(Q,\mathbb{E}^d)$)

2-field continuum formulation: Summary of properties

• Reduces to 1-field formulation with strong enforcement of $\dot{u}-v=0$

$$\begin{split} \int_{Q} \dot{\hat{\mathbf{u}}} \left(\boldsymbol{d} \boldsymbol{M} + \rho \boldsymbol{b} \right) + \int_{\partial Q} \dot{\hat{\mathbf{u}}} \left(\boldsymbol{M}^* - \boldsymbol{M} \right) \\ + \int_{\partial Q} \left(\boldsymbol{\varepsilon}^* - \boldsymbol{\varepsilon} \right) \wedge i \hat{\boldsymbol{\sigma}} \right. &+ \int_{\partial Q^{ti}} k^Q \hat{\mathbf{u}}_0 \left(\mathbf{u}^* - \mathbf{u} \right) \\ &= \mathbf{0} \ \forall \hat{\mathbf{u}} \in \mathcal{V}_h^Q \end{split}$$

Energy converges as h^{2p-1}

Momentum analytically conserved

Discrete and continuum mechanics: Physical quantities

	Atomistic	Continuum		
Displacement, velocity	$\left\{ \mathbf{u}_{lpha} ight\} ,\ \left\{ \mathbf{v}_{lpha} ight\}$	$\mathbf{u},\ \mathbf{v}$		
Strain		${f E}$		
Kinetic energy	$\frac{1}{2}\mathbf{v}_{\alpha}\cdot\mathbf{p}_{\alpha}$	$\frac{1}{2} \boldsymbol{v} \wedge \boldsymbol{p}$		
Potential energy (density)	$V\left(\left\{\mathbf{u}_{\alpha}\right\}\right) = \tilde{V}\left(\left\{\mathbf{u}_{\alpha} + \mathbf{x}_{\alpha}^{0}\right\}\right)$	$rac{1}{2}m{E}\wedgem{\sigma}$		
Force/stress	$\mathbf{F}_{\alpha} = -\nabla_{\alpha} V\left(\{\mathbf{u}_{\alpha}\}\right)$	$ar{oldsymbol{\sigma}} = \mathbf{C} abla \mathbf{u}$		
Work	$\int dt \ \mathbf{v}_{\alpha} \cdot \mathbf{F}_{\alpha}$	$\int_{\partial Q} m{i}m{v} \wedge m{\sigma}$		
EOM	$\mathbf{F}_{\alpha'}\left(\left\{\mathbf{u}_{\alpha}\right\}\right) - m_{\alpha'}\dot{\mathbf{v}}_{\alpha'} = 0$	$ abla \cdot oldsymbol{\sigma} - ho \dot{\mathbf{v}} + ho \mathbf{b} = 0$		
Compatibility	$\dot{\mathbf{u}}_{\alpha'} - \mathbf{v}_{\alpha'} = 0$	$\dot{\mathbf{u}}-\mathbf{v}=0$		

SDG for discrete mechanics: Atomistic SDG (aSDG)

Investigate relationship between atomistic and continuum mechanics through development of atomistic SDG

- Solution to atomistic (spatially discrete) coupled ODEs
- Finite element method in time
- "Two-field": Treat *u* and *v* individually for each vector component of each atom

aSDG and cSDG: Equation of motion and momentum balance

- Atomic interaction is non-local force
 - Atoms interacting with one another advance simultaneously
 - Cannot use causal meshing from cSDG for implicit solution
- Divide problem into simultaneous solution on successive time intervals:

world lines of 2 displaced particles

- Jump term associated with EOM is discrete momentum flow across temporal interface
- Contribution of EOM and associated jump term on $t \in (t_i, t_o)$ to aSDG

$$\sum_{\alpha} \left[\int_{t_1}^{t_2} dt \ \hat{\mathbf{v}}_{\alpha} \cdot (m_{\alpha} \dot{\mathbf{v}}_{\alpha} + \mathbf{F}_{\alpha}) + \hat{\mathbf{v}}_{\alpha} \cdot (m_{\alpha} \mathbf{v}_{\alpha}^{prev} - m_{\alpha} \mathbf{v}_{\alpha}) |_{t=t_1} \right]$$

aSDG and cSDG: Kinematic compatibility

Compatibility of atomic positions required across temporal interfaces

Undeformed Deformed, compatible Deformed, incompatible E incompatibility v incomp

Contribution of compatibility to aSDG

$$\sum_{\alpha} \left[\int_{t_1}^{t_2} dt \ k^a \hat{\mathbf{u}}_{\alpha} \cdot (-\dot{\mathbf{u}}_{\alpha} + \mathbf{v}_{\alpha}) + k^a \hat{\mathbf{u}}_{\alpha} \cdot (\mathbf{u}_{\alpha}^{prev} - m_{\alpha} \mathbf{u}_{\alpha}) \right|_{t=t_1} \right]$$

Atomistic SDG: Formulation

Full aSDG formulation:

$$\sum_{\alpha} \left[\int_{t_1}^{t_2} dt \ \hat{\mathbf{v}}_{\alpha} \cdot (m_{\alpha} \dot{\mathbf{v}}_{\alpha} + \mathbf{F}_{\alpha}) + \hat{\mathbf{v}}_{\alpha} \cdot (m_{\alpha} \mathbf{v}_{\alpha}^{prev} - m_{\alpha} \mathbf{v}_{\alpha}) |_{t=t_1} \right] \\
+ \sum_{\alpha} \left[\int_{t_1}^{t_2} dt \ k^a \hat{\mathbf{u}}_{\alpha} \cdot (-\dot{\mathbf{u}}_{\alpha} + \mathbf{v}_{\alpha}) + k^a \hat{\mathbf{u}}_{\alpha} \cdot (\mathbf{u}_{\alpha}^{prev} - m_{\alpha} \mathbf{u}_{\alpha}) |_{t=t_1} \right] = \mathbf{0} \forall \hat{\mathbf{u}}_{\alpha}, \hat{\mathbf{v}}_{\alpha}$$

- Properties
 - Finite element method in time for MD
 - Momentum balance analytically zero
 - Dissipates energy (like continuum) at low rate

Atomistic SDG from Continuum SDG

All fields and mass density localized at atoms:

$$\rho(\mathbf{x},t) = \sum_{\alpha} \delta(\mathbf{x} - \mathbf{x}_{\alpha}) m_{\alpha}$$

$$\mathbf{u}(\mathbf{x},t) = \sum_{\alpha} \delta(\mathbf{x} - \mathbf{x}_{\alpha}) \mathbf{u}_{\alpha}(t)$$

$$\mathbf{v}(\mathbf{x},t) = \sum_{\alpha} \delta(\mathbf{x} - \mathbf{x}_{\alpha}) \mathbf{v}_{\alpha}(t)$$

$$\mathbf{dp}(\mathbf{x},t) = \sum_{\alpha} \delta(\mathbf{x} - \mathbf{x}_{\alpha}) \dot{\mathbf{p}}_{\alpha}(t) dt$$

 Stress/strain undefined interactions via body forces (non-local)

$$\mathbf{d\sigma}(\mathbf{x},t) \to \rho \mathbf{b}(\mathbf{x},t) = \sum_{\alpha} \delta(\mathbf{x} - \mathbf{x}_{\alpha}) \mathbf{F}_{\alpha}((\mathbf{x}_{\beta}(t))) \Omega$$

(recall EOM:
$$dM + \rho b = -dp + d\sigma + \rho b = 0$$
)

Making aSDG explicit: Position update

1. Enforce continuity of displacement on time-inflow interface:

$$\mathbf{u}_{\alpha}^{prev}\left(t_{i}\right)-\mathbf{u}_{\alpha}\left(t_{i}\right)\rightarrow0$$

2. Take explicit (independent) time-step for u, e.g. as in Velocity Verlet:

$$\mathbf{u}_{\alpha}(t_{o}) = \mathbf{u}_{\alpha}(t_{i}) + \mathbf{v}_{\alpha}(t_{i}) \Delta t + \frac{1}{2m} \mathbf{F}_{\alpha}(t_{i}) \Delta t^{2}, \quad \Delta t = t_{o} - t_{i}$$

Explicit step decouples ${\boldsymbol u}$ and ${\boldsymbol v}$

Making aSDG explicit: Velocity step

- 1. Take explicit time-step in \mathbf{u} , decoupling \mathbf{u} and \mathbf{v}
- 2. Calculate force/acceleration according to $\{\mathbf{x}_{\beta}(t_1)\}$ and $\{\mathbf{x}_{\beta}(t_2)\}$
- 3. Lowest order: Obtain V. Verlet from velocity portion of atomistic SDG by
 - restricting $\mathbf{v}(t)$ to quadratic function space
 - integrating via Simpson's rule for 3 linearly independent $\hat{\mathbf{v}}_{\alpha}(t)$

This yields

Continuity at time-inflow interface
$$\mathbf{v}_{\alpha}^{prev}(t_i) - \mathbf{v}_{\alpha}(t_i) = 0$$

Equation of motion at t_1 , t_2 $\dot{\mathbf{v}}_{\alpha}(t_1) = \frac{1}{m} \mathbf{F}_{\alpha}(t_1)$, $\dot{\mathbf{v}}_{\alpha}(t_2) = \frac{1}{m} \mathbf{F}_{\alpha}(t_2)$

 \Rightarrow Velocity update of Velocity Verlet $\mathbf{v}_{\alpha}(t_{2}) = \mathbf{v}_{\alpha}^{prev}(t_{1}) + \frac{1}{2m}(\mathbf{F}_{\alpha}(t_{1}) + \mathbf{F}_{\alpha}(t_{2}))\Delta t$

Lowest order explicit approximation of aSDG coincides with Velocity Verlet

Atomistic SDG: Test case

- Implicit calculation with linear-spring interaction
- Employ different polynomial orders and compare with VVerlet
- 1d with periodic boundary conditions
- Initial condition: Pulse derived from truncated Fourier series
 - Allows comparison with analytic result, including dispersion for pure atomistc case
 - C^{∞} in continuum calculations
 - Tends not to obscure error
- Fix 100 atoms
- Vary dt as a fraction of a/c

(interatomic spacing / maximum wave speed; dt=1.0 $a/c \Leftrightarrow CFL$) Include timestep longer than CFL

One set of long runs to show long-term stability

Atomistic SDG: Displacement

aSDG: 100 atoms, 3+2 dof

see external movie file: aSDG100at

IAsdg: Displacement t=1.0000

aSDG and VVerlet: Displacement error and dispersion

Displacement after 1 pass of pulse through periodic domain (100 atoms)

Velocity Verlet has trouble resolving dispersion for dt=1.0 case.

- NOTE: On all plots, 'a+b' signifies a dof for u, b dof for v.
 E.g. for 3+2, displacement ~ t², velocity ~ t
- Error defined as $(L_{\infty} \text{ error})/(u_{maxInit}-u_{minInit})$

aSDG: Momentum error

- Initial momentum is zero, so error is absolute error in total momentum, normalized by L_2 -norm of initial momentum
- Analytically aSDG conserves momentum exactly, so all error due to finite precision arithmetic

aSDG: Energy error

- Absolute energy change normalized by initial energy magnitude
- Non-drifting energy of V. Verlet well-known, but incompletely understood
- aSDG is energy dissipative: plots are of normalized, absolute error

Discrete mechanics and Atomistic SDG: Summary

- Primary difference between continuum and atomistic methods enters through non-local, discrete nature of interatomic interaction
 - Forces instead of stress
 - Forces act non-locally, requiring different approach to causality
 - Strain not well defined
- Atomistic SDG offers family of higher order schemes for MD
- aSDG shows similar momentum and energy properties to cSDG
- Future investigation of higher-order explicit atomistic methods planned

Coupling: Atomistic and continuum SDG

- 2-field SDG is governing mathematical model
- Employ continuum 2- or 1-field SDG in continuum region
- Couple through flux compatibility relations at Γ^{AC}

- Division of solution space into continuum and atomsitic regions remains constant $\Rightarrow \mathbf{n}^{AC} \cdot \mathbf{e}_t = 0$
- No "ghost atoms" in continuum
- Currently implemented for 1d with 1st NN atom at boundary
- Implemented for aSDG with linear springs and VVerlet for linear springs and non-linear Morse potential (all 1NN)

Coupling: Atomistic and continuum SDG

 Continuum compatibility relations (kinematic and momentum)

$$egin{aligned} &\int_{\Gamma^{AC}} \left(\mathbf{v}^* - \mathbf{v}^C
ight) \wedge \hat{oldsymbol{\sigma}}^C \ &+ \int_{\Gamma^{AC}} \hat{\mathbf{v}}^C \cdot \left(oldsymbol{\sigma}^* - oldsymbol{\sigma}^C
ight) \end{aligned}$$

- Recall, \mathbf{v}^* and σ^* are determined from values on both sides of interface.
- To supply flux conditions from atomistics,
 - homogenize atomic velocities at boundary <v>^A
 - solve for forces on atoms as initially undetermined forces

$$\int_{\Gamma^{AC}} raket{\hat{\mathbf{v}}}^A \cdot \left(oldsymbol{\sigma}^* - \mathbf{F}^A
ight) + \int_{\Gamma^{AC}} \left(\mathbf{v}^* - \left\langle\mathbf{v}
ight
angle^A
ight) \wedge \hat{\mathbf{F}}^A$$

Momentum balanced explicitly; Energy balance will depend on <v>A

Coupled: 20 elements, 5x5 dof; 100 atoms, 5+4 dof see external movie file: coupled100at.mov

Coupled: 20 elements, 5x5 dof; 200 atoms, 5+4 dof see external movie file: coupled200at.mov

- Displacement error scales with number of atoms
- Relative error due to number of elements and polynomial order insignificant in comparison

acSDG: Total energy error

- Energy error reflects greater error component systems (atomistic or continuum)
- Similar trend seen in total momentum error

acSDG: Energy balance

Components of total energy for coupled system coupled with 40 elem 5x5 dof, 100 atom 5+4 dof

- A. Pulse begins in continuum region
- B. Pulse fully in atomistic region
- C. Pulse fully in continuum region
 - Slight energy error as pulse crosses interfaces

t=0.5

Component energy when pulse fully in one region

•			, 5.5			
	Cont	At	Cont	At	Cont	At
20 elem, 100 at	1.0	0.0	5.0e-3	0.9948	0.9799	0.0196
40 elem, 100 at	1.0	0.0	5.0e-3	0.9950	0.9804	0.0196
20 elem, 200 at	1.0	0.0	1.2e-3	0.9984	0.9944	4.9e-3
40 elem, 200 at	1.0	0.0	1.2e-3	0.9988	0.9951	4.9e-3

t=0.0

t=1.0

acSDG: Momentum balance

Components of total momentum for coupled system

- A. Pulse begins in continuum region
- B. Pulse fully in atomistic region
- C. Pulse fully in continuum region
- Total momentum ~10⁻¹⁰
- Component momentum reflects pulse passing through coupling boundaries

t=0.5

Component momentum when pulse fully in one region

*******	ι-0.0		1-0.5		ι– 1.0	
	Cont	At	Cont	At	Cont	At
20 elem, 100 at	-4e-4	4e-4	5e-4	-5e-4	4e-4	-4e-4
40 elem, 100 at	-4e-4	4e-4	5e-4	-5e-4	4e-4	-4e-5
20 elem, 200 at	-2e-4	2e-4	3e-5	-3e-5	-3e-5	3e-5
40 elem, 200 at	-2e-4	2e-4	7e-5	-7e-5	-5e-5	5e-5

t=0.0

t=1.0

Coupling to V. Verlet with linear and non-linear potentials

- Results for VVerlet w/ 1NN spring effectively the same as aSDG
- Results for 1NN Morse potential effectively the same as 1NN spring for smallest

Coupled SDG summary

- Have shown a development of SDG FE method for both continuum discrete mechanics, focusing on differences
- Coupling achieved through flux conditions at AtC boundary
- Coupling employed aSDG in atomistic region (1NN linear spring)
- Similar results for VVerlet in atomistic region for linear spring and non-linear Morse potential (1NN)
- Currently 1d with 1NN interaction
- We have agreement between continuum and atomistics in continuum limit

Future research

- Higher order explicit approximations to aSDG
- Extending coupling in both dimension and interaction length
- Thermal coupling to appropriately handle reduction of d.o.f.

